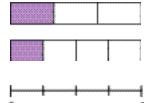
9.2 Adding Fractions with Models

You will need

- fraction strips
- number lines

GOAL

Add fractions that are less than 1 using fraction strips and number lines.

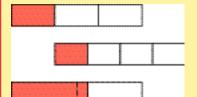

Learn about the Math

Sandra is reading a mystery novel. Last weekend, she read $\frac{1}{3}$ of the book. Yesterday, she read $\frac{1}{4}$ more of the book.

What fraction of the book has Sandra read?

You can use fraction strips or number lines to make models of fractions. A fraction strip shows rectangles that are the same size. The whole length of each fraction strip should be the same, no matter what fraction the strip represents.

The $\frac{1}{3}$ strip and the $\frac{1}{4}$ strip show different denominators.


A number line is like a thin fraction strip.

Example 1: Estimating using fraction strips

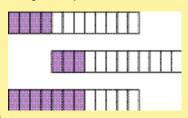
Use fraction strips to estimate $\frac{1}{3} + \frac{1}{4}$.

Sandra's Solution

I divided each fraction strip into the number of parts shown in the denominator. Then I coloured the number of parts shown in the numerator.

I made a $\frac{1}{3}$ strip.

I made a $\frac{1}{4}$ strip and put it at the end of the $\frac{1}{3}$ strip.


I made a $\frac{1}{2}$ strip to compare with $\frac{1}{4} + \frac{1}{3}$. It looks like the sum is a bit more than $\frac{1}{2}$.

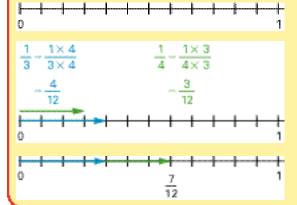
Example 2: Adding using fraction strips

Use fraction strips to add $\frac{1}{3} + \frac{1}{4}$.

Ravi's Solution

If my fraction strips had the same number of parts, I could count the parts in the sum. Both the $\frac{1}{3}$ strip and the $\frac{1}{4}$ strip can be made into twelfths. 12 is a common denominator for $\frac{1}{3}$ and $\frac{1}{4}$ because 12 is a common multiple of 3 and 4.

The
$$\frac{1}{3}$$
 strip becomes $\frac{4}{12}$ because $\frac{1}{3} = \frac{1 \times 4}{3 \times 4}$, which is $\frac{4}{12}$.


The
$$\frac{1}{4}$$
 strip becomes $\frac{3}{12}$ because $\frac{1}{4} = \frac{1 \times 3}{4 \times 3}$, which is $\frac{3}{12}$.

I added
$$\frac{4}{12} + \frac{3}{12}$$
 to get $\frac{7}{12}$.

Example 3: Adding using a number line

Use a number line to add $\frac{1}{2} + \frac{1}{4}$.

Chang's Solution

I know that 12 is a common multiple of 3 and 4, so 12 is a common denominator for $\frac{1}{2}$ and $\frac{1}{4}$. I used a number line marked in twelfths.

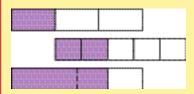
I renamed $\frac{1}{3}$ and $\frac{1}{4}$ in twelfths.

I drew arrows to show $\frac{4}{12}$ and $\frac{3}{12}$.

I put the arrows together to show $\frac{4}{12} + \frac{3}{12} = \frac{7}{12}$.

Reflecting

- 1. In Example 1, how did Sandra know that the answer was a bit more than $\frac{1}{2}$?
- 2. In Example 3, how could Chang use a number line to estimate that the answer must be more than $\frac{1}{4}$ but less than $\frac{1}{2}$?
- 3. Explain how using a common denominator helped Ravi and Chang add fractions using models.


Work with the Math

Example 4: Estimating and adding using models


Estimate and then add $\frac{1}{3} + \frac{2}{5}$.

Solution A

Estimate. $\frac{1}{3} + \frac{2}{5}$ looks like about $\frac{3}{4}$.

To add, first find the common denominator.

$$\frac{1}{3} = \frac{5}{15}$$

$$\frac{2}{5}=\frac{6}{15}$$

$$\frac{5}{15} + \frac{6}{15} = \frac{11}{15}$$

Solution B

Use a number line marked in fifteenths, since 15 is a common denominator for $\frac{1}{3}$ and $\frac{2}{5}$.

Put the arrows together to model addition.

$$\frac{5}{15} + \frac{6}{15} = \frac{11}{15}$$

$$\frac{1}{3} + \frac{2}{5} = \frac{5}{15} + \frac{6}{15}$$

$$= \frac{11}{15}$$

Checking

- **4. a)** How do you know that the sum of $\frac{3}{4}$ and $\frac{1}{6}$ is less than 1?
 - **b)** Use fraction strips to add $\frac{3}{4} + \frac{1}{6}$. Show your work.
- **5.** Use a number line to add $\frac{2}{5} + \frac{7}{10}$. Show your work.
- **6. a)** Describe how you would use fraction strips or a number line to estimate the sum for $\frac{1}{5} + \frac{1}{4}$.
 - b) Describe how you would use fraction strips or a number line to add $\frac{1}{5} + \frac{1}{4}$.

Practising

7. Use fraction strips to estimate and then add. Show your work.

a)
$$\frac{2}{3} + \frac{1}{3}$$
 d) $\frac{2}{3} + \frac{1}{2}$

d)
$$\frac{2}{3} + \frac{1}{2}$$

b)
$$\frac{1}{4} + \frac{1}{2}$$

b)
$$\frac{1}{4} + \frac{1}{2}$$
 e) $\frac{2}{3} + \frac{3}{5}$

c)
$$\frac{1}{8} + \frac{1}{4}$$
 f) $\frac{5}{6} + \frac{3}{4}$

f)
$$\frac{5}{6} + \frac{3}{2}$$

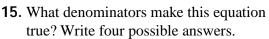
8. Use a number line to add. Show your work.

a)
$$\frac{3}{5} + \frac{1}{4}$$
 d) $\frac{1}{3} + \frac{4}{5}$
b) $\frac{2}{3} + \frac{1}{6}$ e) $\frac{5}{6} + \frac{1}{3}$

d)
$$\frac{1}{3} + \frac{4}{5}$$

b)
$$\frac{2}{3} + \frac{1}{6}$$

e)
$$\frac{5}{6} + \frac{1}{3}$$


c)
$$\frac{1}{6} + \frac{1}{4}$$

c)
$$\frac{1}{6} + \frac{1}{4}$$
 f) $\frac{5}{6} + \frac{1}{4}$

Use fraction strips or a number line to model each addition in questions 9 to 18.

- **9.** Determine each sum.
 - **a)** $\frac{1}{8} + \frac{3}{4}$ **b)** $\frac{4}{5} + \frac{1}{2}$
- **10.** The recipe for a cheese sauce requires $\frac{1}{3}$ c. of flour at the beginning and another $\frac{1}{8}$ c. of flour later. How much flour is required?
- **11.** In a Grade 7 class, $\frac{1}{5}$ of the students have two pets and $\frac{1}{20}$ have three pets.
 - a) Estimate the fraction of the class that has either two or three pets.
 - **b)** Calculate the fraction of the class that has either two or three pets.
 - c) How many students do you think are in the class? Why?
- **12. a)** Rewrite $\frac{1}{5}$ and $\frac{1}{20}$, from question 11, as percents. Add the percents.
 - **b)** How does your answer for part (a) relate to your answer for question 11, part (b)?
- **13**. In the fall of 2003, the population of Ontario was about 39% of the population of Canada. The population of the western provinces was about $\frac{3}{10}$ of the population of Canada.
 - a) What fraction of Canadians live in Ontario and the western provinces?
 - **b)** What percent of Canadians live in Ontario and the western provinces?
- **14.** Jane watched one television program for

 $\frac{1}{4}$ of an hour and then changed channels to watch another program for 20 min. Write an equation to describe the fraction of an hour that Jane watched television.

$$\frac{1}{1} + \frac{2}{1} = \frac{3}{1}$$

Extending

16. Yan has three measuring cups filled with sugar.

- a) Can Yan empty all three measuring cups into a 1 c. measuring cup? Explain.
- **b)** How much sugar does he have in total?
- **17.** a) Add each pair of fractions. Describe the model you used, and look for a pattern in the sums.

 - i) $\frac{1}{3} + \frac{1}{4}$ ii) $\frac{1}{5} + \frac{1}{6}$ iv) $\frac{1}{6} + \frac{1}{7}$
- b) Describe a rule for adding fractions in the form $\frac{1}{1} + \frac{1}{1}$. Justify your rule.
- **18.** a) Copy and complete the table. Describe a pattern in the sums.

$\frac{1}{2} + \frac{1}{4} =$	3 4
$\frac{1}{3} + \frac{1}{6} =$	3
$\frac{1}{4} + \frac{1}{8} =$	3
+ =	<u>3</u> 10

b) Use the pattern to predict the answer to $\frac{1}{20} + \frac{1}{40}$.