GOAL

Recognize the image of a 2-D shape after a translation.

Learn about the Math

Jody is tiling a floor using square black and white tiles. She wants the floor to have a chessboard pattern. All the tiles are in a pile at $(-2,0)$. Jody takes one tile at a time from the pile and slides it into position.

?
 How can J ody slide the tiles into position?

Communication Tip

The new shape that is created when a shape is transformed is called the image. The original shape is called the pre-image. The vertices of the image are often labelled using the same letters as the pre-image, but with primes. (For M', say "M prime.") This shows which vertices of the image match which vertices of the pre-image. When M^{\prime} is transformed, its image is $\mathrm{M}^{\prime \prime}$.

Example 1: Describing translation images using a coordinate grid

Describe how J ody slides the tiles into position.

Jody's Solution

I began by moving some of the black tiles into position from their starting point at $S(-2,0)$. I moved them along the arrows shown in the diagram. Here's how I moved each tile and the tile's final position:

A: 1 unit to the right and 3 units up to $A(-1,3)$
B: 2 units to the right and 2 units up to $B(0,2)$
C: 3 units to the right and 1 unit up to $C(1,1)$
D: 4 units to the right to $D(2,0)$
E: 3 units to the right and 1 unit down to $E(1,-1)$
F: 2 units to the right and 2 units down to $F(0,-2)$
G: 1 unit to the right and 3 units down to $\mathrm{G}(-1,-3)$
Then I moved the rest of the tiles into position until the floor was complete.

Example 2: Determining translations using the coordinates of the starting point and endpoint

Determine how J ody slid each tile into position, using just the coordinates of the starting point and endpoint of the slide.

Indira's Solution

starting point: $S(-2,0)$
endpoint: $A(-1,3)$
$(-1)-(-2)=1$ or $(-1)-(-2)=+1$
$3-0=3$ or $(+3)-0=+3$

The endpoint, A, has coordinates $(-1,3)$. The starting point, S , has coordinates ($-2,0$).

The difference between the x-coordinates is +1 or 1 .
The difference between the y-coordinates is +3 or 3 .
So, J ody slid the tile 1 unit to the right and 3 units up.

Reflecting

1. For the translation of a tile, draw an arrow from each vertex of the pre-image to the matching vertex of the image. What do the arrows have in common?
2. What properties of a pre-image and its image are the same after a translation? What properties are different? Include orientation in your answer.

orientation

the direction that a shape or an object is facing; for example, $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ have the same orientation

Work with the Math

Example 3: Describing translation images using a coordinate grid

Describe the effects of the translation shown below.

Kwami's Solution

From the diagram, the coordinates of M are $(-3,0)$ and the coordinates of M^{\prime} are $(-2,3)$.
The difference between the x-coordinates is $(-2)-(-3)=+1$.
The difference between the y-coordinates is $(+3)-0=+3$.
So, M moved 1 unit to the right and 3 units up to the image point M^{\prime}.

Also, the other three vertices moved the same way, 1 unit to the right and 3 units up.

(A) Checking

3. Point A has coordinates $(2,4)$ on centimetre grid paper. It is translated 12 cm to the right and 3 cm up. What are the coordinates of the new location?
4. Describe the transformation that moved quadrilateral $D E F G$ to quadrilateral $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$.

5. Which of figures B, C, and D is not a translation of figure A? Explain.

B Practising

Use centimetre grid paper for the following questions.
6. The vertices of $\triangle A B C$ have coordinates $A(1,2), B(3,5)$, and $C(3,-1) . \triangle A B C$ is translated 2 units to the right and 1 unit down. Determine the coordinates of the image triangle.
7. a) Describe the transformation that moved $\triangle R S T$ to $\triangle R^{\prime} S^{\prime} T^{\prime}$.

b) Describe the transformation that moved rectangle $J K L M$ to rectangle $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$.

8. Copy each shape and translate it to determine the image coordinates.
a) Translate parallelogram $A B C D 3 \mathrm{~cm}$ down.

b) Translate $\triangle E F G 2 \mathrm{~cm}$ to the left and 1 cm up.

9. The vertices of square $A B C D$ are $A(-1,-1)$, $B(1,-1), C(1,1)$, and $D(-1,1)$. Square $A B C D$ is translated 3 cm to the left and 2 cm up. Determine the coordinates of all the vertices of the image square.
10. a) Draw any triangle, $\triangle D E F$, on a coordinate grid. Record the coordinates of each vertex.
b) Transform $\triangle D E F 5 \mathrm{~cm}$ to the left and 4 cm down. Label the image $\triangle D^{\prime} E^{\prime} F^{\prime}$.
c) Determine the coordinates of D^{\prime}, E^{\prime}, and F^{\prime}.
11. $\triangle D E F$ has a base, $D E$, that is 7 cm long. Describe how you would translate $\triangle D E F$ so that D^{\prime} is the same point as E. Draw a diagram to illustrate your description.
12. Square $W X Y Z$ has sides that are 2 cm long. Squares A and B are translation images of square $W X Y Z$. Describe how square $W X Y Z$ was translated to create squares A and B.

13. The vertices of $\triangle A B C$ have coordinates $A(3,-2), B(0,0)$, and $C(2,2)$.
a) $\triangle A B C$ is translated 3 cm to the right and 2 cm down. Determine the coordinates of the image triangle. Label the image triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.
b) $\triangle A^{\prime} B^{\prime} \mathrm{C}^{\prime}$ is translated 1 cm to the right and 3 cm up. Determine the coordinates of the image triangle. Label the image triangle $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
c) Describe a single translation that moves $\triangle A B C$ directly to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
14. Nathan has a paper route in a part of town where all the streets run either north-south or east-west. From his home, he travels 4 blocks north, 3 blocks east, 7 blocks south, 2 blocks east, 5 blocks north, 3 blocks west, and 2 blocks south. At the end of his route, how many blocks is he from his home, and in what direction?
15. The vertices of $\triangle A B C$ have coordinates $A(2,0), B(3,0)$, and $C(2,2)$.
a) Translate $\triangle A B C 2 \mathrm{~cm}$ to the right and 1 cm down. Then translate the resulting image 1 cm to the right and 2 cm up.
b) Start again with $\triangle A B C$. Translate $\triangle A B C 1 \mathrm{~cm}$ to the right and 2 cm up. Then translate the resulting image 2 cm to the right and 1 cm down.
c) Compare your results in parts (a) and (b). If you apply two translations, one after the other, does the order in which you apply them matter? Write a hypothesis, and explore it using several examples.

C Extending

16. $\triangle A B C$ is translated 3 units to the left and 2 units down. The vertices of the image triangle, $\triangle A^{\prime} B^{\prime} C^{\prime}$, have coordinates $A^{\prime}(1,-1), B^{\prime}(3,-2)$, and $C^{\prime}(2,1)$.
Determine the coordinates of the vertices of $\triangle A B C$.
17. $\triangle A B C$ is translated 2 units to the right and 1 unit up to produce $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then $\triangle A^{\prime} B^{\prime} C^{\prime}$ is translated 3 units to the right and 2 units down to produce $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. The coordinates of three of the vertices are $A(0,0), B^{\prime}(6,0)$, and $C^{\prime \prime}(6,0)$. Determine the coordinates of all the other vertices of the three triangles.
