Adding Integers Using the Zero Principle

🕨 GOAL

Use the zero principle, with and without models, to add integers.

Learn about the Math

In a coin tossing experiment, Paul gained 1 point (+1) when he tossed Heads. He lost 1 point (-1) when he tossed Tails.

The following table shows Paul's results of 11 tosses.

Toss number	1	2	3	4	5	6	7	8	9	10	11
Result (+1) or (-1)	-1	-1	+1	+1	+1	-1	+1	-1	+1	-1	-1

How can you add integers to calculate Paul's score after 11 tosses?

You can use a blue counter \bigcirc to represent (-1) and a red counter \bigcirc to represent (+1). The integers (+1) and (-1) are **opposite integers**.

Adding (-1) and (+1) gives a net result of zero.

This is the **zero principle**.

opposite integers

two integers the same distance away from zero; for example, +6 and -6 are opposite integers

zero principle

two opposite integers, when added, give a sum of zero; for example, (-1) + (+1) = 0

Example 1: Modelling the sum with counters

Use counters to calculate Paul's score after 11 tosses.

Paul's Solution

I modelled my first 11 tosses using counters. I used blue counters to represent (-1) and red counters to represent (+1).

I changed the order to get pairs of blue and red counters. In each pair, (+1) paired with (-1) is 0. One blue counter was left over. The answer is (-1).

Use integers greater than +1 and less than -1 to calculate Paul's score after 11 tosses.

Miguel's Solution

I wrote all the positive 1s first. Then I wrote all the negative 1s.

(+5) + (-5) + (-1)= 0 + (-1)

The zero principle says that (-5) + (+5) = 0.

(−1) was left over.

Reflecting

= (-1)

- **1.** a) How are Paul's and Fawn's solutions alike?
 - **b**) How are they different?
- **2**. Miguel used the idea that the sum of any two opposite integers is always zero. Verify Miguel's solution using counters.

Communication Tip

- Read the integer +1 as "positive 1" and the integer -1 as "negative 1."
- · Integer expressions often have brackets around the integers.
- Do not confuse the sign of an integer with the operation of addition or subtraction. For example, to add +2 and -4, write (+2) + (-4). This means "positive 2 plus negative 4."

Work with the Math

A Checking

3. Add each expression using counters and numbers.

	Expression	Using counters	Using numbers
a)	(-3) + (+2)		
b)	(-4) + (+6)		
c)	(+5) + (-6)		
d)	(-5) + (+7)		
e)	(+2) + (-8)		
f)	(-1) + (-9)		

- 4. Use mental math to determine each sum.
 - **a**) (+3) + (-3) =
 - **b**) (-7) + (+7) =

Practising

You may use counters to answer the following questions.

5. Complete.

- a) (-3) + (-2) =
- **b)** (+2) + (-2) =
- **c**) (-4) + (+1) =
- **d**) (-7) + (+6) =
- e) (-5) + (-2) =
- **f**) (-5) + (+2) =
- **6.** Explain why (-25) + (+25) = 0.
- **7.** The following patterns are based on adding integers. Continue each pattern. Then write a rule to describe each pattern.
 - a) 0, -1, -2, -3, -4, , , , b) -3, -2, -1, 0, , ,
- **8.** Fill in each with +1 or -1 to make each statement true.
 - **a**) (+1) + = (-1)
 - **b**) (-1) + + = (+1)
 - c) (+1) + + + + = (-1)
 - **d**) (+1) + + + + + (+1) = (-1)
- 9. Complete.
 - **a**) (-3) + (+3) + (+5) =
 - **b**) (-1) + (-2) + (-1) =
 - c) (+2) + (+1) + = (-1)

- **a**) (-1) + (-2) = (-4)
- **b**) (+2) + (-5) (-3)
- c) (-3) + (+6) (+2)
- **d**) (+5) + (-7) (-2)
- e) (-2) + (-4) (-5)

f)
$$(-2) + (+1) = 0$$

- 11. Using +1 and -1 only, create an addition question that has each sum. Use at least four numbers for the question. Check your work using counters.
 - **a**) +3 **b**) -2 **c**) 0 **d**) -1
- **12. a)** Calculate the sum. You can use counters or numbers. (+1) + (+1) + (-1) + (+1) + (-1) + (-1) + (-1) + (+1) + (+1) + (-1)
 - **b**) Which method did you choose? Why?
- **13.** Fill in each with an integer to make the equation true. Show three different solutions.

+ + = (-5)

14. Explain why you cannot complete this equation using only +1s or -1s.

(+1) + + + = (+1)

- **15.** In a Magic Square, all rows, columns, and diagonals have the same sum. No number appears more than once.
 - a) This Magic Square uses integers from -6 to +2. Verify that the rows, columns, and diagonals all have the same sum.

+1 -4	-8 -2	1 0
-3	+2	-5
		1

The sum of the (-1) + 0 + (-1) third column is shown.

 b) This Magic Square uses integers from -1 to +7. Complete it. Check that all the sums are the same.

	F		1			1	5	ŝ	1	1	5		1	٦	i			
1 - 1						1	z							4				
	D					П	5							я				
-	Ŀ					3	г							1				
						3	c											
							s							з				
203																		
	H	÷	÷	÷	÷	1	ł					-	7	-	t			

 c) This Magic Square uses integers from -4 to +4. Complete it. Check that all the sums are the same.

d) Create a Magic Square that uses integers from -10 to -2.

G Extending

- **16**. State whether each statement is true or false. Explain your reasoning.
 - a) The sum of two positive integers is positive.
 - **b**) The sum of two negative integers is negative.
 - c) The sum of a negative integer and a positive integer is always positive.
- **17.** Continue each pattern. Write a rule to describe the pattern.
 - a) 0, +1, -1, +2, -2, +3, -3, , , , ,
 b) -1, 0, -1, -1, -2, -3, -5, -8, ,
 ,
- **18.** Without using a calculator, determine the sum of all the integers from -50 to +50. Describe your strategy.
- **19. a)** Calculate the average daily high temperature for the four days.

Four-day weather forecast	High temperature (°C)	Low temperature (°C)					
Wednesday	+10	0					
Thursday	+5	-6					
Friday	+9	-7					
Saturday	+8	-3					

- **b**) Calculate the average daily low temperature for the four days.
- c) What is the range between the highest high and the lowest low?