Central Tendency

GOAL Compare effects on measures of central tendency of adding or removing values.

Explore the Math

Each day for two rainy weeks in April, Simon researched the prediction about the probability of precipitation from a Web site.

Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
75%	40%	90%	50%	100%	20%	70%
0%	60%	30%	30%	50%	50%	20%

Simon thinks that the effect of removing the greatest and least values will not have the same affect on the mean, the median, and the mode.

How can you compare the effect of removing values?

- **A.** Predict. Do you agree with Simon? Justify your prediction.
- **B.** Determine the mean, median, and mode for the first 12 days of Simon's data. Round the mean to the nearest percent.
- **C.** Repeat step B for all Simon's data.
- **D.** Remove the least and greatest values from all of Simon's data, and repeat step B.
- **E.** Remove the three greatest values from all of Simon's data and repeat step B.
- **F.** Research predictions for the probability of precipitation for as many days as possible. Repeat steps B to E for your data.

Reflecting

- **1. a)** Did including the last two days of Simon's data affect the measures of central tendency? Why or why not?
 - b) Did removing the least and greatest values from all of Simon's data affect the measures of central tendency? Why or why not?
 - c) Did removing the three greatest values from all of Simon's data affect the measures of central tendency? Why or why not?
- 2. Do you think adding or removing values from data would usually affect the measures of central tendency? Justify your answer.
- **3.** Is the data you researched expressed as a fraction, a decimal, or a percent? Do you think this is the best way to express the data? Why or why not?

You will need

- a calculator
- a data sources for weather predictions